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cheap talk 
 

Cheap-talk models address the question of how much information can be 

credibly transmitted when communication is direct and costless. When a 

single informed expert, who is biased, gives advice to a decision maker, only 

noisy information can be credibly transmitted. The more biased the expert is, 

the noisier the information. The decision maker can improve information 

transmission by: (a) more extensive communication, (b) soliciting advice from 

additional experts, or (c) writing contracts with the expert.  
 
In the context of games of incomplete information, the term ‘cheap talk’ refers to 

direct and costless communication among players. Cheap-talk models should be 

contrasted with more standard signalling models. In the latter, informed agents 

communicate private information indirectly via their choices – concerning, say, levels 

of education attained – and these choices are costly. Indeed, signalling is credible 

precisely because choices are differentially costly – for instance, high-productivity 

workers may distinguish themselves from low-productivity workers by acquiring 

levels of education that would be too costly for the latter.  

The central question addressed in cheap-talk models is the following. How much 

information, if any, can be credibly transmitted when communication is direct and 

costless? Interest in this question stems from the fact that with cheap talk there is 

always a ‘babbling’ equilibrium in which the participants deem all communication to 

be meaningless – after all, it has no direct payoff consequences – and as a result no 

one has any incentive to communicate anything meaningful. It is then natural to ask 

whether there are also equilibria in which communication is meaningful and 

informative.  

We begin by examining the question posed above in the simplest possible setting: 

there is a single informed party – an expert – who offers information to a single 

uninformed decision maker. This simple model forms the basis of much work on 

cheap talk and was introduced in a now classic paper by Crawford and Sobel (1982). 

In what follows, we first outline the main finding of this paper, namely, that while 

there are informative equilibria, these entail a significant loss of information. We then 

examine various remedies that have been proposed to solve (or at least alleviate) the 

‘information problem’. 
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The information problem 

We begin by considering the leading case in the model of Crawford and Sobel 

(henceforth CS). A decision maker must choose some decision y. Her payoff depends 

on y and on an unknown state of the world θ, which is distributed uniformly on the 

unit interval. The decision maker can base her decision on the costless message m sent 

by an expert who knows the precise value of θ. The decision maker’s payoff is 
2( ) ( )U y yθ θ, = − − , and the expert’s payoff is 2( ) ( ( ))V y b y bθ θ, , = − − + , where 

0b ≥  is a ‘bias’ parameter that measures how closely aligned the preferences of the 

two are. Because of the tractability of the ‘uniform-quadratic’ specification, this 

paper, and indeed much of the cheap talk literature, restricts attention to this case.  

The sequence of play is as follows: 

 

 
 

What can be said about (Bayesian-perfect) equilibria of this game? As noted 

above, there is always an equilibrium in which no information is conveyed, even in 

the case where preferences are perfectly aligned (that is, 0b = ). In such a ‘babbling’ 

equilibrium, the decision maker believes (correctly it turns out) that there is no 

information content in the expert’s message and hence chooses her decision only on 

the basis of her prior information. Given this, the expert has no incentive to convey 

any information – he may as well send random, uninformative messages – and hence 

the expert indeed ‘babbles’. This reasoning is independent of any of the details of the 

model other than the fact that the expert’s message is ‘cheap talk’.  

Are there equilibria in which all information is conveyed? When there is any 

misalignment of preferences, the answer turns out to be no. Specifically,  

 

Proposition 1. If the expert is even slightly biased, all equilibria entail some 

information loss.  

The proposition follows from the fact that, if the expert’s message always revealed the 

true state and the decision maker believed him, then the expert would have the 

incentive to exaggerate the state – in some states θ, he would report bθ + . 
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Are there equilibria in which some but not all information is shared? Suppose that, 

following message m, the decision maker holds posterior beliefs given by distribution 

function G. The action y is chosen to maximize her payoffs given G. Because payoffs 

are quadratic, this amounts to choosing a y satisfying:  

 ( ) [ ]y m E mθ= |  (1) 

Suppose that the expert faces a choice between sending a message m that induces 

action y or an alternative message, m′ , that induces an action y y′ > . Suppose further 

that in state θ ′  the expert prefers y′  to y and vice versa in state θ θ< ′ . Since the 

preferences satisfy the single-crossing condition, 0yV θ > , the expert would prefer y′  

to y in all states higher than θ ′ . This implies that there is a unique state a, satisfying 

aθ θ< < ′ , in which the expert is indifferent between the two actions. Equivalently, 

the distance between y and the expert’s ‘bliss’ (ideal) action in state a is equal to the 

distance between action y′  and the expert’s bliss action in state a. Hence,  

 ( )a b y y a b+ − = ′− +  (2) 

Thus, message m is sent for all states aθ <  and message m′  for all states aθ > . 

To comprise an equilibrium where exactly two actions are induced, one would 

need to find values for a, y, and y′  that simultaneously satisfy eqs. (1) and (2). Since 

m is sent in all states aθ < , from eq. (1), 2
ay = , Similarly, 1

2
ay +′ = . Inserting these 

expression into eq. (2) yields 

 1 2
2

a b= −  (3) 

Equation (3) has several interesting properties. First, notice that a is uniquely 

determined for a given bias. Second, notice that, when the bias gets large 1
4( )b ≥ , 

there is no feasible value of a, so no information is conveyed in any equilibrium. 

Finally, notice that, when the expert is unbiased ( 0)b = , there exists an equilibrium 

where the state space is equally divided into ‘high’ 1
2( )θ >  and ‘low’ 1

2( )θ <  regions 

and the optimal actions respond accordingly. As the bias increases, the low region 

shrinks in size while the high region grows; thus, the higher the bias is, the less the 

information conveyed. 

For all 1
4b < , we constructed an equilibrium that partitions the state space into 

two intervals. As the bias decreases, equilibria exist that partition the state space into 

more than two intervals. Indeed, Crawford and Sobel (1982) showed that:  
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Proposition 2. All equilibria partition the state space into a finite number of intervals. 

The information conveyed in the most informative equilibrium is decreasing in the 

bias of the expert. 

If the expert were able to commit to fully reveal what he knows, both parties would be 

better off than in any equilibrium of the game described above. With full revelation, 

the decision maker would choose y θ=  and earn a payoff of zero, while the expert 

would earn a payoff of 2b− . It is easily verified that in any equilibrium the payoffs of 

both parties are lower than this. The overall message of the CS model is that, absent 

any commitment possibilities, cheap talk inevitably leads to information loss, which is 

increasing in the bias of the expert. The remainder of the article studies various 

‘remedies’ for the information loss problem: more extensive communication, 

delegation, contracts, and multiple experts.  
 
Remedies 

Extensive communication 

In the CS model, the form of the communication between the two parties was one-

sided – the expert simply offered a report to the decision maker, who then acted on it. 

Of course, communication can be much richer than this, and it is natural to ask 

whether its form affects information transmission. One might think that it would not. 

First, one-sided communication where the expert speaks two or more times is no 

better than having him speak once, since any information the expert might convey in 

many messages can be encoded in a single message. Now, suppose the 

communication is two-sided – it is a conversation – so the decision maker also speaks. 

Since she has no information of her own to contribute, all she can do is to send 

random messages, and at first glance this seems to add little. As we will show, 

however, random messages improve information transmission by acting as 

coordinating devices.  

To see this, suppose the expert has bias 1
12b = . As we previously showed, when 

only he speaks, the best equilibrium is where the expert reveals whether the state is 

above or below 1
3 . Suppose instead that we allow for face-to-face conversation – a 

simultaneous exchange of messages – and that the sequence of play is:  
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The following strategies constitute an equilibrium. The expert reveals some 

information at the face-to-face meeting, but there is also some randomness in what 

transpires. Depending on how the conversation goes, the meeting is deemed by both 

parties to be a ‘success’ or a ‘failure’. After the meeting, and depending on its 

outcome, the expert may send an additional ‘written report’ to the decision maker.  

During the meeting, the expert reveals whether θ is above or below 1
6 ; he also 

sends some additional messages that affect the success or failure of the meeting. If he 

reveals that 1
6θ ≤ , the meeting is adjourned, no more communication takes place, and 

the decision maker chooses a low action 1
12Ly =  that is optimal given the information 

that 1
6θ ≤ .  

If, however, he reveals that 1
6θ > , then the written report depends on whether the 

meeting was a success or a failure. If the meeting is a failure, no more communication 

takes place, and the decision maker chooses the ‘pooling’ action 7
12Py =  that is 

optimal given that 1
6θ > . If the meeting is a success, however, the written report 

further divides the interval 1
6[ 1],  into 51

6 12[ ],  and 5
12[ 1], . In the first sub-interval, the 

medium action 7
24My =  is taken and in the second sub-interval the high action 

17
24Hy =  is taken. The actions taken in different states are depicted in Figure 1. The 

dotted line depicts the actions, 1
12θ + , that are ‘ideal’ for the expert.  

 
Figure 1  Equilibrium with face-to-face meeting 
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Notice that in state 1
6 , the expert prefers yL to yP (yL is closer to the dotted line 

than is yP) and prefers yM to yL. Thus, if there were no uncertainty about the outcome 

of the meeting – for instance, if all meetings were ‘successes’ – then the expert would 

not be willing to reveal whether the state is above or below 1
6 ; for states 1

6θ ε= − , the 

expert would say 51
6 12[ ]θ ∈ , , thereby inducing yM instead of yL. If all meetings were 

failures, then for states 1
6θ ε= + , the expert would say 1

6θ < , thereby inducing yL 

instead of yP. 

There exists a probability 16
21p =  such that when 1

6θ =  the expert is indifferent 

between yL and a ( 1 )p p, −  lottery between yM and yP (whose certainty equivalent is 

labelled yC in the figure). Also, when 1
6θ < , the expert prefers yL to a ( 1 )p p, −  

lottery between yM and yP, and when 1
6θ > , the expert prefers a ( 1 )p p, −  lottery 

between yM and yP to yL. 

It remains to specify a conversation such that the meeting is successful with 

probability 16
21p = . Suppose the expert sends a message (Low, Ai) or (High, Ai) and 

the decision maker sends a message Aj, where {1 2 21}i j, ∈ , ,..., . These messages are 

interpreted as follows. Low signals that 1
6θ ≤  and High signals that 1

6θ > . The Ai and 

Aj messages play the role of a coordinating device and determine whether the meeting 

is successful. The expert chooses Ai at random and each Ai is equally likely. Similarly, 
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the decision maker chooses Aj at random. Given these choices, the meeting is a  
 

 
if 0 16 or 5

otherwise
Success i j j i
Failure

≤ − < − >
  

For example, if the messages of the expert and the decision maker are (High, A17) and 

A5, respectively, then it is inferred that 1
6θ >  and, since 12 16i j− = < , the meeting is 

a success. Observe that with these strategies, given any Ai or Aj, the probability that 

the meeting is a success is exactly 16
21 .  

The equilibrium constructed above conveys more information than any equilibria 

of the CS game. The remarkable fact about the equilibrium is that this improvement in 

information transmission is achieved by adding a stage in which the uninformed 

decision maker also participates. While the analysis above concerns itself with the 

case where 1
12b = , informational improvement through a ‘conversation’ is a general 

phenomenon (Krishna and Morgan, 2004a):  
 
Proposition 3. Multiple stages of communication together with active participation by 

the decision maker always improve information transmission.  

What happens if the two parties converse than once? Does every additional stage of 

communication lead to more information transmission? In a closely related setting, 

Aumann and Hart (2003) obtain a precise but abstract characterization of the set of 

equilibrium payoffs that emerge in sender–receiver games with a finite number of 

states and actions when the number of stages of communication is infinite. Because 

the CS model has a continuum of states and actions, their characterization does not 

directly apply. Nevertheless, it can be shown that, even with an unlimited 

conversation, full revelation is impossible. A full characterization of the set of 

equilibrium payoffs with multiple stages remains an open question.  
 
Delegation 

A key tenet of organizational theory is the ‘delegation principle’, which says that the 

power to make decisions should reside in the hands of those with the relevant 

information (Milgrom and Roberts, 1992). Thus, one approach to solving the 

information problem is simply to delegate the decision to the expert. However, the 

expert’s bias will distort the chosen action from the decision maker’s perspective. 

Delegation this leads to a trade-off between an optimal decision by an uninformed 
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party and a biased decision by an informed party.  

Is delegation worthwhile? Consider again an expert with bias 1
12b = . The decision 

maker’s payoff from the most informative partition equilibrium is 1
36− . Under 

delegation, the action chosen is y bθ= +  and the payoff is 2 1
144b− = − . Thus 

delegation is preferred. Dessein (2002) shows that this is always true:  
 
Proposition 4. If the expert’s bias is not too large 1

4( )b ≤ , delegation is better than all 

equilibria of the CS model.  

In fact, by exerting only slightly more control, the decision maker can do even better. 

As first pointed out by Holmström (1984), the optimal delegation scheme involves 

limiting the scope of actions from which the expert can choose. Under the uniform-

quadratic specification, the decision maker should optimally limit the expert’s choice 

of actions to [0 1 ]y b∈ , − . When 1
12b = , limiting actions in this way raises the 

decision maker’s payoff from 1
144−  to 1

162− . 

Optimal delegation still leads to information loss. When the expert’s choice is 

‘capped’, in high states the action is unresponsive to the state.  

An application of the delegation principle arises in the US House of 

Representatives. Typically a specialized committee – analogous to an informed expert 

– sends a bill to the floor of the House – the decision maker. How it may then be 

amended depends on the legislative rule under effect. Under the so-called closed rule 

the floor is limited in its ability to amend the bill, while under the open rule the floor 

may freely amend the bill. Thus, operating under a closed rule is similar to delegation, 

while an open rule is similar to the CS model. The proposition above suggests, and 

Gilligan and Krehbiel (1987; 1989) have shown, that in some circumstances the floor 

may benefit by adopting a closed rule.  
 
Contracts 

Up until now we have assumed that the decision maker did not compensate the expert 

for his advice. Can compensation, via an incentive contract, solve the information 

problem? To examine this, we amend the model to allow for compensation and use 

mechanism design to find the optimal contract. Suppose that the payoffs are now 

given by 
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2

2

( ) ( )
( ) ( )
U y t ty

V y b t y b t
θ θ

θ θ

, , = − −−

, , , = − − − +
  

where 0t ≥  is the amount of compensation.  

Using the revelation principle, we can restrict attention to a direct mechanism 

where both t and y depend on the state θ  reported by the expert. Notice that such 

mechanisms directly link the expert’s reports to payoffs – talk is no longer cheap.  

Contracts are powerful instruments. A contract that leads to full information 

revelation and first-best actions is: 

 
ˆ ˆ( ) 2 (1 )
ˆ ˆ( )

t b

y

θ θ

θ θ

= −

=
  

where θ̂  is the state reported by the expert. Under this contract, the expert can do no 

better than to tell the truth, that is, to set θ̂ θ= , and, as a consequence, the action 

undertaken in this scheme is the ‘bliss’ action for the decision maker. Full revelation 

is expensive, however. When 1
12b = , the decision maker’s payoff from this scheme is 

1
12− . Notice that this is worse than the payoff of 1

36−  in the best CS equilibrium, 

which can be obtained with no contract at all. The costs of implementing the fully 

revealing contract outweigh the benefits.  

 In general, Krishna and Morgan (2004b) show:  
 
Proposition 5. With contracts, full revelation is always feasible but never optimal. 
 

Figure 2  An optimal contract, 1
3b ≤  
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The proposition above shows that full revelation is never optimal. No contract at 

all is also not optimal – delegation is preferable. What is the structure of the optimal 

contract? A typical optimal contract is depicted as the dark line in Figure 2. First, 

notice that, even though the decision maker could induce his bliss action for some 

states, it is never optimal to do so. Instead, for low states ( )bθ <  the decision maker 

implements a ‘compromise’ action – an action that lies between θ and bθ + . When 

bθ > , the optimal contract simply consists of capped delegation.  
 
Multiple senders 

Thus far we have focused attention on how a decision maker should consult a single 

expert. In many instances, decision makers consult multiple experts – often with 

similar information but differing ideologies (biases). Political leaders often form 

cabinets of advisors with overlapping expertise. How should a cabinet be constituted? 

Is a balanced cabinet – one with advisors with opposing ideologies – helpful? How 

should the decision maker structure the ‘debate’ among her advisors?  

To study these issues, we add a second expert having identical information to the 

CS model. To incorporate ideological differences, suppose the experts have differing 

biases. When both b1 and b2 are positive, the experts have like bias – both prefer 

higher actions than does the decision maker. In contrast, if 1 0b >  and 2 0b < , then the 

experts have opposing bias – expert 1 prefers a higher action and expert 2 a lower 

action than does the decision maker.  
 
Simultaneous talk 

When both experts report to the decision maker simultaneously, the information 

problem is apparently solved – full revelation is now an equilibrium. To see this, 

suppose the experts have like bias and consider the following strategy for the decision 

maker: choose the action that is the more ‘conservative’ of the two recommendations. 

Precisely, if 1 2m m< , choose action m1 and vice versa if 2 1m m< . Under this strategy, 

each expert can do no better than to report θ  honestly if the other does likewise. If 

expert 2 reports 2m θ= , then a report 1m θ>  has no effect on the action. However, 

reporting 1m θ<  changes the action to 1y m= , but this is worse for expert 1. Thus, 

expert 1 is content to simply tell the truth. Opposing bias requires a more complicated 
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construction, but the effect is the same: full revelation is an equilibrium (see Krishna 

and Morgan, 2001b).  

Notice that the above construction is fragile because truth-telling is a weakly 

dominated strategy. Each expert is at least as well off by reporting i im bθ= +  and 

strictly better off in some cases. Battaglini (2002) defines an equilibrium refinement 

for such games which, like the notion of perfect equilibrium in finite games, 

incorporates the usual idea that players may make mistakes. He then shows that such 

a refinement rules out all equilibria with full revelation regardless of the direction of 

the biases. While the set of equilibria satisfying the refinement is unknown, the fact 

that full revelation is ruled out means that simply adding a second expert does not 

solve the information problem satisfactorily.  
 
Sequential talk 

Finally, we turn to the case where the experts offer advice in sequence:  

 
Suppose that the two experts have biases 1

1 18b =  and 1
2 12b = , respectively. It is 

easy to verify (with the use of (2)) that, if only expert 1 were consulted, then the most 

informative equilibrium entails his revealing that the state is below 1
9 , or between 1

9  

and 4
9 , or above 4

9 . If only expert 2 were consulted, then the most informative 

equilibrium is where he reveals whether the state is below or above 1
3 . If the decision 

maker were able to consult only one of the two experts, she would be better off 

consulting the more loyal expert 1.  

But what happens if she consults both? It turns out that, if both experts actively 

contribute information, then the decision maker can do no better than the following 

equilibrium. Expert 1 speaks first and reveals whether or not the state is above or 

below 11
27 . If expert 1 reveals that the state is above 11

27 , expert 2 reveals nothing 

further. If, however, expert 1 reveals that the state is below 11
27 , then expert 2 reveals 

further whether or not it is above or below 1
27 . That this is an equilibrium may be 

verified again by using (2) and recognizing that, in state 1
27 , expert 2 must be 

indifferent between the optimal action in the interval 1
27[0 ],  and the optimal action in 
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1 11
27 27[ ], . In state 11

27 , expert 1 must be indifferent between the optimal action in 1 11
27 27[ ],  

and the optimal action in 11
27[ 1], . 

Sadly, by actively consulting both experts, the decision maker is worse off than if 

she simply ignored expert 2 and consulted only her more loyal advisor, expert 1. This 

result is quite general, as shown by Krishna and Morgan (2001a):  
 
Proposition 6. When experts have like biases, actively consulting the less loyal expert 

never helps the decision maker.  

The situation is quite different when experts have opposing biases, that is, when the 

cabinet is balanced. To see this, suppose that the cabinet is comprised of two equally 

loyal experts biases 1
1 12b =  and 1

2 12b = − . Consulting expert 1 alone leads to a 

partition 1
3[0 ], , 1

3[ 1],  while consulting expert 2 alone leads to the partition 2
3[0 ], , 

2
3[ 1], . If instead the decision maker asked both experts for advice, the following is an 

equilibrium: expert 1 reveals whether θ  is above or below 2
9 . If he reveals that the 

state is below 2
9 , the discussion ends. If, however, expert 1 indicates that the state is 

above 2
9 , expert 2 is actively consulted and reveals further whether the state is above 

or below 7
9 . Based on this, the decision maker takes the appropriate action. One may 

readily verify that this is an improvement over consulting either expert alone. Once 

again the example readily generalizes:  
 
Proposition 7. When experts have opposing biases, actively consulting both experts 

always helps the decision maker. 

Indeed, the decision maker can be more clever than this. One can show that, with 

experts of opposing bias, there exist equilibria where a portion of the state space is 

fully revealed. By allowing for a ‘rebuttal’ stage in the debate, there exists an 

equilibrium where all information is fully revealed.  
 
 

Vijay Krishna and John Morgan 
 
See also agency problems; asymmetric information; signalling 
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